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Multispin-AI: N-ary spintronics-based edge computing co-

processor for artificial intelligence

 This study is part of an effort to develop a new type of spintronic crossbar for AI
computation. While current spintronic crossbars use binary magnetic tunnel junctions
(MTJs), our goal is to use multi-state MTJs. We expect that the use of such MTJs will
increase the computation speed and improve its energy efficiency dramatically.

 To investigate the spin-orbit torque (SOT) we have performed
harmonic Hall voltage measurements which are typically employed
to determine the current-induced SOTs in HM/FM heterostructures
with in-plane magnetic anisotropy.

 Previous harmonic Hall measurements were performed in the
field limit when 𝐻𝑒𝑥𝑡 ≫ 𝐻𝐴 applies. Modified form of the harmonic
Hall term is required when 𝐻𝐴 is dominant.

We derived a generalized form of the second-order harmonic
Hall term, and we present its behavior above and below the critical
value of 𝐻𝐴. Giant response of the uniaxial magnetic domain to the
SOTs is confirmed by the second-order harmonic signal at the
magnetic transition between the two easy axes, when 𝐻𝑒𝑥𝑡 ≤ 𝐻𝐴.

 Current research: Recently, we have found out that the first-
order harmonic matches well with the assumption that the non-
uniform magnetization can be replaced by the average
magnetization, however, in the second-order harmonic Hall
measurement this assumption fails.

 Current Breakthrough: The results suggest that the effect of
non-uniformity on the SOTs should be considered, both
experimentally and theoretically.
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These findings challenge existing assumptions regarding SOTs and open the door to further exploration
of non-uniform magnetic systems in the context of SOT research.
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SOT-based field-free switching between all types of states
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The spin-orbit torque phenomenon and the harmonic Hall 

characterization measurements
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While the first-order harmonic Stoner’s simulation matches closely to the experimental data, the
second-order harmonic shows a much lower degree of agreement with our previous formalism.
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