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Executive Summary 

This report explores the implementation and evaluation of a n-ary AI inference framework using multistate 

magnetic tunnel junctions (M²TJs) as core components in analog in-memory computing (IMC) architectures for 

neural network inference. As traditional von Neumann architectures face limitations due to the memory-

computation separation, IMC offers a promising alternative by performing matrix-vector multiplications (MVMs) 

directly within memory arrays, thereby reducing data transfer overhead and enhancing energy efficiency. 

The report focuses on the use of M²TJ-based crossbar arrays, provides a theoretical formulation of the signal 

retrieval process in such arrays, and examine the analog MAC operation in detail. We implement a quantization 

method that maps full-precision weights to a limited set of equidistant resistance states, optimized through a 

sequential least squares search method. Evaluation on the MNIST dataset shows that the inference of the network 

in a crossbar array of 4-states M²TJs and without dimensionality reduction achieves 94.48% accuracy. By applying 

PCA to reduce the input dimensionality, the number of required operations is reduced by 87.44% while accuracy 

increases to 95.74%, approaching the software baseline at 98.04%. 

The robustness of our framework was evaluated on a simulated M²TJ crossbar, considering three main sources of 

error: quantization, systematic nonidealities, and cell-specific variations. Quantization error, resulting from the 

limited number of states per M²TJ, decreases as the number of states increases and is smaller for low-dimensional 

inputs, indicating that network size and preprocessing influence precision requirements. Systematic nonidealities, 

such as non-equidistant resistance levels, introduce a uniform bias across the array, while cell-specific variations, 

including device-to-device differences and noise, contribute deviations that average out across the crossbar. By 

analyzing these error sources together, we can predict their combined effect on inference accuracy. This analysis 

also allows to obtain the preliminary formulation of an optimal number of resistance states per M²TJ for a given 

noise environment, providing guidance for crossbar design to balance precision, robustness, and hardware 

constraints.  

Our results demonstrate that our framework for n-ary AI inference based on M²TJ crossbars can support efficient 

neural network inference with competitive accuracy, provided that quantization schemes, the choice of an optimal 

number of states per cell, and physical non-idealities are carefully accounted for during design. These findings will 

be communicated in an article soon to be submitted to either Applied Physics Letters: Machine Learning or Nature 

Communications Engineering. 
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1 Introduction 

This report presents a framework for neural network inference using a crossbar-based analog in-memory 

computing (IMC) architecture composed of multistate magnetic tunnel junctions (M²TJs). The motivation for IMC 

is introduced in the context of current machine learning hardware limitations, followed by a description of matrix–

vector multiplication simulated through M²TJ crossbar arrays. Inference is performed using analog MAC operations 

and a signal retrieval method to obtain the computed outputs. We detail the quantization strategy used to map 

trained weights onto discrete resistance levels and validate the approach through XOR and MNIST inference tasks. 

For MNIST, principal component analysis (PCA) is applied to reduce input dimensionality and limit quantization-

induced noise. A detailed error assessment is conducted to analyze quantization error, systematic variations, and 

cell-specific noise, as well as their combined impact on inference accuracy. This analysis also enables the preliminary 

determination of an optimal number of resistance states per M²TJ cell as a function of the noise level. The results 

illustrate the trade-offs between precision, robustness, and hardware complexity in multistate IMC architectures. 

2 Background  

2.1 Machine learning and resources management at the end of 2025 

Artificial neural networks (ANN) are mathematical functions with many of parameters called weights. The value of 

these weights is determined so that the network fills a specific purpose (such as classifying data, predicting 

quantities, or generating content) with a minimal error. This is done using well-known techniques called error 

backpropagation and gradient descent, during a phase referred to as the training of the network. Once the network 

is trained, the value of the weights stays fixed and the network can be used to process new pieces of data during a 

phase known as the inference, which is the actual use of the trained ANN. Inferring a standard ANN mainly relies 

on two simple mathematical operations repeated many times. The first one is the application of a nonlinear 

activation function (reLU, sigmoid etc) emulating the artificial neurons’ output. The other one is a weighted sum 

that allows to propagate the signal from one layer of neurons to the next one. This weighted sum scales the output 

signal of the neurons in a layer and sums them to form the input signal for the neurons of the next layer. Despite 

its apparent simplicity, the so-called multiply-and-accumulate (MAC) operation, also often more pragmatically 

referred to as matrix-vector multiplication (MVM), is the cornerstone of any ANN. 

 

However, modern computers, whose architecture separates the processing unit (CPU) from the memory (RAM), 

struggle to perform so many (although simple) operations efficiently as it requires moving data back and forth 

repeatedly between both units. This phenomenon leads to an increased processing time and energy consumption, 

and is further worsened by the von Neumann bottleneck, or memory wall, which depicts the increasing gap 

between the time required by the CPU to process data, and the much longer time required to retrieve said data 

from the RAM. Therefore, the CPU spends an increasing amount of time waiting for the data to be read from the 

memory unit [1]. This sparked the development of a new generation of components for running intelligent systems, 

namely graphic processing units (GPU) [2] and tensor processing units (TPU) [3]. However, since the end of 2025, 

the ever-increasing use of AI worldwide has put the RAM manufacturing sector under pressure, leading to the 

explosion of the prices for all kinds of smart electronic devices, from laptop and smartphones to vacuum cleaners 

and connected fridges [4]. The energy consumed by AI data centers has not stopped increasing either, even 

triggering the planning of new dedicated nuclear reactors in some cases [5]. Finally, the amount of water consumed 

for the cooling of data centers has also recently raised concerns regarding the sustainability of AI [6]. 
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2.2 In-memory computing 

These observations have justified the need for the research and development of new memory technologies and 

frameworks optimized for AI applications. Among them, in-memory computing (IMC) proposes to perform MVMs 

directly in the RAM, solving the von Neumann bottleneck and the memory wall issues for these operations. More 

specifically, the network’s weights learned during the training phase are stored in a crossbar array of RAM cells 

under the form of resistance (resp. conductance) levels (Fig. 1). The input vectors, injected under the form of 

current intensities (resp. voltages), are analogically multiplied by the resistance (resp. conductance) value in each 

cell to generate a voltage (resp. current). The generated voltages (resp. currents) are then summed along the 

transverse direction accordingly to Kirchhoff’s law to perform the accumulation. The output voltages (resp. 

currents) hence contain the result of the MVM [7]. While this concept is not new, most of the implementations 

proposed so far must accommodate with significant constraints that hinder their efficiency. This is due to the 

complexity of implementing a MVM analogically with minimal error. To our knowledge, most of the proposed 

solutions rely on devices with two resistance states, hence constraining the weights to binary encoding and limiting 

the computational power of the system [8-13]. Some works circumvent this issue by combining several binary 

devices in a single crossbar cell to emulate a larger number of bits, but at the expense of the size and the complexity 

of the system [9, 14-15]. While other works report a multibit encoding of the weights in the crossbar array, some 

kind of quantization is required in the encoding of the input and output signal, once again limiting the 

computational performance of the solution [16]. Hence, a straightforward solution allowing the analogue 

multiplication of continuous input signals with multibit weights is still missing.  

 

In the scope of this project, we developed a method allowing the computation of analogue MVMs in a crossbar 

array of multistate magnetic tunnel junctions (M²TJ). We aim at providing a simple and generalizable framework 

that enables the use of standalone multistate devices with minimal assumptions, as well as providing insights on 

the expected performance of said systems and an assessment of the different sources of error.  

 

 
Figure 1: A crossbar array of cells with programmable conductance (resistance) states allows the computation of a MVM in the memory. 

2.3 Simulating MVMs using a crossbar array of M²TJs  

In the previous period of the project, we presented a method for encoding weights into 𝑁 resistance values, and 

input signals into current intensities. Note that this method can also be used in the reverse configuration, i.e. with 

weights encoded into conductance values and with input signals encoded into voltages. We will however stick to 

the resistance configuration for the sake of readability. 

Our goal is to perform the following MVM 

𝑦  =  𝑊𝑥 
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To do so, we must first quantize the weights matrix 𝑊 into 𝑁 equidistant values 𝐴𝑖  with minimal error. This 

quantization step is mandatory, due to the discrete number of resistance levels in each M²TJ.  As a base case, we 

considered 𝑁 = 4  but the approach is generalizable to any 𝑁 value. To do so, we minimize the squared distance 

between the 𝑁 values 𝐴𝑖  and the weights 𝑤 from matrix 𝑊 that are the closest to 𝐴𝑖, a problem similar to the K-

means optimization problem, with an additional constraint of equidistance between the centroids. The quantized 

weight matrix 𝐴 is then described as follows: 

 

argminA ∑ ∑ |𝑤 − 𝐴𝑖|
2

 

𝑤∈𝐴𝑖

𝑁

𝑖=1

 with 𝐴𝑖  −  𝐴𝑖−1  =  𝑑    

 

The MVM to be computed using the crossbar array is thus 

𝑦̃  =  𝐴𝑥 

 

Then, we assume a linear scaling of the input vector 𝑥 into a vector of current intensities values 𝐼 with coefficients 

𝑎𝐼 and 𝑏𝐼 defined accordingly to the requirements of the system: 

𝐼  =  𝑎𝐼  𝑥  +  𝑏𝐼 

 

A similar scaling can be used to map the elements of the quantized weights matrix A to the 𝑁 resistance levels of 

the M²TJs, hence forming the resistance matrix R: 

𝑅𝑚𝑛  =  𝑎𝑅  𝐴𝑚𝑛   +  𝑏𝑅 
 

The voltage generated in the cell at position (𝑚,  𝑛) in the crossbar array is thus equal to  

𝑉𝑚𝑛  =  𝑅𝑚𝑛 𝐼𝑛 

and the voltage accumulated to form one element of the output vector is equal to 

𝑉𝑚  =   ∑ 𝑉𝑚𝑛
 
𝑛   =   ∑ 𝑅𝑚𝑛

 
𝑛  𝐼𝑛    

which after substitution yields 

𝑉𝑚  =  𝑎𝑅  𝑎𝐼  ∑𝐴𝑚𝑛

 

𝑛

 𝑥𝑛  +  𝑏𝑅  𝑎𝐼  ∑𝑥𝑛

 

𝑛

  +  𝑎𝑅  𝑏𝐼  ∑𝐴𝑚𝑛

 

𝑛

  +  𝑛 𝑏𝑅  𝑏𝐼  

We can also write 

𝑦̃ 𝑚  =  ∑𝐴𝑚𝑛 𝑥𝑚

 

𝑛

 

Hence,  

𝑦𝑚  =
𝑉𝑚  −  𝑏𝑅  𝑎𝐼   ∑ 𝑥𝑛

 
𝑛   −  𝑎𝑅  𝑏𝐼   ∑ 𝐴𝑚𝑛

 
𝑛   −  𝑛 𝑏𝑅  𝑏𝐼

𝑎𝑅  𝑎𝐼
  

 

which under vectorial form simplifies to: 

 
As a result, the approached results of the MVM ỹ can be retrieved by scaling the measured signal 𝑉 by removing 

the two constant offsets (𝑏𝑅  (𝐼
T ⋅ 1)) and (𝑎𝑅𝑏𝐼(𝐴  ⋅ 1)) and then dividing by the constant factor (𝑎𝑅  𝑎𝐼). The term 

(𝐼T ⋅ 1) is simply a scalar value representing the sum of the input signal, which can be computed easily on chip or 

stored in the memory of the measurement equipment. The term (𝐴 ⋅ 1) is a vector containing the row-wise sum of 

𝐴, which must be computed only once and then can be stored in the memory of the measurement equipment as 

well. 

 

In most of the cases, input data is scaled in [0, 1] before being fed to an ANN for standard machine learning tasks. 

Hence, by setting 𝑏𝐼   =  0, the input signal is simply scaled by the parameter 𝑎𝐼 which represents the maximum 
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current intensity that one can inject in the M²TJs. This simplified approach with yields a simpler version of the 

scaling of the measured signal used to retrieve the result of the MVM:  

 

 

 
In the previous reporting period, we used this method successfully to perform MVMs in a simulated crossbar array 

of (4x4) M²TJs with 4 levels of resistance, with continuous input signals. It has also been showed that it could be 

scaled to larger arrays and numbers of states easily. 

 

3 Performing standard ML tasks with the crossbar array 

Since the development of the method presented above, we progressed concurrently on computing MAC operations 

and performing standard machine learning (ML) tasks using a simulation of the M²TJs crossbar array.  In this section 

we present the results of the second deliverable of work package 4, i.e. the computation of standard machine 

learning tasks using a (simulated) crossbar array of M²TJs. We first tackle a very simple ML task to present in detail 

the procedure used to perform the inference with the crossbar array. We will then focus on presenting the results 

of a more complex ML task in a following section. 

3.1 The XOR approximation problem 

We first tackle a simple yet important task in the field of ML. The XOR approximation problem is one of the smallest 

problems requiring a multilayer perceptron (MLP) to be solved. It consists in training a small neural network to 

approximate the XOR function, i.e. to generate the same output as the XOR function for any input. Performing the 

inference of the trained network with the crossbar array and the method presented above will ensure that the key 

characteristics of a simple neural network are conserved in the hardware.  

3.1.1 Approximating the XOR function  

The exclusive OR function (XOR) is a binary function whose truth table is presented in Fig. 2, left. To successfully 

approximate XOR, a neural network needs to be able to learn a “boundary” separating the input space into two 

regions, each of them yielding a specific output (0 or 1). In other words, the network must emulate a border 

separating (0, 0) and (1, 1) from (0, 1) and (1, 0) (Fig. 2, right). This border cannot be a single line, but some sort of 

nonlinear curve. That’s why the XOR approximation problem allows to assess the ability of the network to emulate 

a nonlinear function, and by extension its universal approximation ability. While the only valid inputs are binary ((0, 

0), (0, 1), (1, 0), (1, 1)), one can also feed inputs continuously arranged between 0 and 1 into an ANN trained to 

approximate XOR. This helps visualize the boundary learned by the model during the training phase. We evaluate 

the performance of the crossbar array inference by comparing the output array for continuous entries in 

[0,  1] × [0,  1] yielded by the software ANN and the hardware version. 

 

Figure 2: Left: Truth table of the XOR function. Center: XOR Venn diagram. Right: Input space and output values of the XOR function.  
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We trained an ANN with 2 input neurons, 2 hidden neurons, and 1 neuron, all activated with the sigmoid function. 

The training was carried for 2000 epochs using the binary cross entropy loss function, and the Adam optimizer with 

a learning rate of 0.1. The trained network and the output obtained for inputs in [0, 1] are presented in Fig. 3 and 

Fig. 4. 

 

Figure 3: Network trained for the XOR task. The biases are not 
represented. 

 

Figure 4: Output map of the neural network trained for solving 
the XOR task. Notice the similarities with Fig. 2, right. 

3.1.2 Inference using the crossbar array 

In this section we present how we used a simulated crossbar array of (4 x 4) M²TJs with 4 resistance levels to 

generate the same output as in Fig. 4.  

We first set 𝑎𝐼   =  0.0005 to scale the input between 0 and 0.5 mA. For the record, the value of the switching 

current reported in Ref. [17] is 10 mA, but the reading current can be much lower. The scaling is represented in Fig. 

5. 

𝐼  =  0.5 𝑥 (mA) 

 

Figure 5: Scaling of the input data. 

Then, we must quantize the weights matrices learned in the previous section into 4 values. The weights values in 

the first layer are the following: 

{8.57,  8.58,  11.97,  12.06} 

The 4 equidistant values obtained with our quantization method are the following: 

{8.58,  9.72,  10.87,  12.01} 

Hence, the weights matrix of the first layer 𝑊1 is quantized accordingly to form matrix 𝐴1: 
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Note that 𝐴1only contains two distinct values because some of the values in 𝑊1 are originally close (11.97 and 

12.06, and 8.57 and 8.58). The quantization values of 𝐴1 are then mapped to 2 of the 4 resistance values reported 

in Ref. [17] with the scaling coefficients (𝑎𝑅 ,  𝑏𝑅)  =  (150.59,  8110.40) as represented in Fig. 6. The resistance 

values of two of the cells are thus programmed to be 9402 Ω, and two others are programmed so that their 

resistance is 9919 Ω. The output signal measured from the simulated crossbar array is then converted to obtain 𝑦̃ 

and the biases learned during the training are added. The sigmoid function is applied to the result to form the input 

signal 𝑥. 

 

Figure 6: Scaling of the weights into resistance states. 

A second MVM must then be performed to transmit the signal to the neuron of the last layer of the network. We 

choose the scaling coefficients 𝑎𝐼 and 𝑏𝐼 so that the input signal is still in the [0,  0.5 mA] range. As the weights 

matrix of the second layer 𝑊2 contains only two values (−16.87 and 16.05 ), it does not need quantization, and 

the two values are mapped to the lowest and highest resistances values (Fig. 7). The simulated output voltage signal 

is once again scaled to retrieve 𝑦̃, and the learned biases are added before applying the last sigmoid function. 

 

Figure 7: Scaling of the weights of the second layer into resistance states 

3.1.3 Results 

The output map obtained using the crossbar array inference is displayed in Fig. 8. It can be directly seen that the 

appearance of the map is very similar to the one obtained with the classical software approached. The relative 

difference between the two maps presented in Fig. 9 shows that the error in the crossbar array output (here, the 

software output is considered as the ground truth) is only localized on the decision borders. In other words, the 

network inferred with the crossbar array agrees with the software version for the data points that matter ([0, 0], 

[0, 1], [1, 0] and [1, 1]), and disagrees the most for the data points that are the less relevant. This indicates that the 

crossbar array inference conserves the principal characteristics of the model learned by the network during the 

training phase. However, the only source of error considered so far is the quantization process, so additional 

sources will be assessed in a following section. 
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Figure 8: Output map of the network trained for solving the XOR 
task and inferred with the simulated crossbar array. 

 

Figure 9: Absolute difference between the software and the 
crossbar outputs. 

3.1.4 Remarks 

3.1.4.1 Scaling values 

The coefficients used for scaling the input 𝑥 into current intensity values (𝑎𝐼 and 𝑏𝐼) were chosen as a function of 

the minimum and maximum values of 𝑥 to ensure that the scaled signal stayed in the range [0,  0.5 mA]. However, 

these values are arbitrarily chosen and can be tuned to better fit the actual hardware and the experimental 

constraints as long as the output signal values stay resolved to be measured accurately.     

3.1.4.2 Crossbar array multiplexing 

While a (4 × 4) crossbar array was considered, the two MVMs performed here were involving matrices of size 

(2 × 2) and (1 × 2). The crossbar array can be used for emulating smaller matrices by voluntarily avoiding the use 

of all the M²TJs. In the case of the (2 × 2) matrix, two input channels would get zero input signal, and two of the 

output channels would be discarded for example. Larger matrices can also be emulated using a crossbar array of 

limited size by leveraging the multiplexing technique presented in Ref. [9]. It consists in using the array several 

times successively with different sets of weights and recombining the outputs to reconstruct the output of a 

virtually larger array. 

3.2 MNIST classification 

The XOR approximation problem confirms that the basic properties of a trained network are conserved when the 

inference is performed in an idealized crossbar array of M²TJs. However, a more complex and concrete ML task is 

required to get a better insight of the actual performance of the hardware as an AI co-processor. In this regard, we 

chose to tackle the MNIST classification task, one of the most famous ML tasks in the ML community [18]. This will 

allow us to assess in more detail the performance of our hardware inference implementation, its limitations, 

robustness to error, and potential paths for further optimization. 

3.2.1 The MNIST dataset 

The MNIST dataset is composed of 70000 images of handwritten digits from 0 to 9. Usually, 60000 images are used 

to train the model, and 10000 are used to test its performance. Each image is a (28 × 28) grid of pixels (Fig. 10) 

whose intensity is represented by a number between 0 and 255 (most often scaled in the [0, 1] range beforehand).    
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Figure 10: Three examples of the MNIST dataset and the corresponding labels 

3.2.2 Classifying MNIST 

We train a neural network with 784 input nodes (one for each pixel), 128 hidden neurons activated by the reLU 

function, and 10 output neurons activated by the SoftMax function (Fig. 11). The final output is determined by 

selecting the index of the output node with the largest value (argmax). The network achieves a classification 

accuracy of 97.56%, which is in the average of the expected performance for a simple fully connected ANN. 

 

Figure 11: Network trained for classifying the MNIST dataset. 

3.2.3 Inference using the crossbar array 

Once again, two MVMs are required to infer the trained network. The first one multiplies the 784-long input vector 

representing an image with the (128 × 784) weights matrix of the first layer, and the second MVM multiplies the 

128-long hidden vector with the (10 × 128) weights matrix of the second layer to generate the output vector. 

The method used to perform the MVMs is identical to the one used for the XOR approximation task, except that 

here the (4 × 4) crossbar array must be used several times to emulate the much larger matrices involved in the 

computations. This is done using the multiplexing method presented in section 3.1.3.2. However, the emulation of 

the first MVM alone would require performing 6272 measurements and the second MVM would require 96 

measurements, totalizing 6368 operations.  

    

 

While tremendous, this number of operations is only imposed by the limited size of the crossbar array and hence 

is expected to decrease as technology develops and improves. However, it can already be improved using principal 

components analysis (PCA). This technique consists in decreasing the dimensionality of the input data while 

preserving the relevant features (i.e., pixels or combinations of pixels that show the most variance in the data). The 

principal components are first computed (under the form of vectors of weights) using only the training dataset to 

avoid introducing a bias in the model. Then, the principal components are extracted from the input data before 

being fed in the network. This technique allows to reduce the input dimension down to 87 while keeping 90% of 

the variance (orange curve in Fig. 12), leading to a total number of only 800 operations (87.44% less than originally). 

It is important to note that the extraction of the principal components from the input data requires performing a 
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dot product, which is also itself a kind of MVM. But as dot products are involving two vectors (instead of one vector 

and one matrix), it is probably more worth it to perform it within a digital module close to the crossbar rather than 

within the crossbar array itself.  

  

Figure 12: Explained variance in the MNIST training set as a function of the number of input dimensionality after PCA pre-processing. 

3.2.4 Results 

Without applying the PCA technique (i.e., using the raw input data) the accuracy reached with a (4 × 4) crossbar 

array of M²TJs with 4 states, the accuracy reached by the network is 94.48%, representing a decrease of 3.18% from 

the accuracy reached with the full software inference. This performance degradation is due to the quantization 

process from 32-bits values to 2-bits values, as no other sources of errors were considered in the simulations so far.  

As a side study, the first 87 principal components determined with the PCA technique in the training set were 

extracted from each sample of the dataset as a pre-processing strategy. The accuracy reached with the full software 

inference was 98.03%. This increase in accuracy compared to the case without the PCA pre-processing comes from 

the fact that PCA effectively removes noisy features from the data by only keeping the relevant (more significant) 

ones. Moreover, the resulting network is simpler, which helps reaching a better accuracy score. The accuracy 

reached with the same model inferred with the M²TJs crossbar array is 95.24%, representing a drop in accuracy of 

2.79% compared to the software solution. While being the same order of magnitude, the accuracy drop between 

the software and hardware inference processes is 13% lower when using the PCA pre-processing technique. This 

can be explained by the network architecture, which is simpler in the latter case. This limits the errors introduced 

by the quantization process as the weights matrix of the input layer is much smaller than without PCA. Simplifying 

the architecture and reducing the number of weights of the network hence allows to mitigate the impact of 

quantization errors.  

4 Error assessment 

Here we show a deeper analysis of the different error sources acting on the array, how they combine, and how 

their impact on the performance of the system scales. We also present a study on determining an optimal number 

of resistance states in each M²TJ. 

4.1 Quantization error 

The limited number of states in each M²TJ imposes a mandatory loss of precision in the representation of the 

weights, originally encoded on 32 or 64 bits in the software. The resulting quantization error can be limited by 

determining appropriate equidistant “quantized” weights values 𝐴𝑖, which are optimized by minimizing the 

distance between each weight 𝑤 and the closest quantized weight value 𝐴𝑖  as presented in section 2.3. The 



D4.2 Standard ML tasks    

© MultiSpin.AI | HORIZON-EIC-2023-PATHFINDEROPEN-01| 101130046 

quantization error is however expected to decrease as 1/𝑁 where 𝑁 is the number of states in each M²TJ, as shown 

in Fig. 13. As already presented in section 3.2.4, the quantization error is mitigated in simpler neural architectures 

with low-dimensional input data due to its limited accumulation is smaller weights matrices. 

4.2 Systematic errors 

We considered the impact of “systematic” errors to enhance the reliability of the simulations. Systematic errors 

come from sources that have the same influence on all the devices in the crossbar array. Namely, nonidealities in 

the fabrication process may lead to a nonideal resistance levels distribution, where said levels are not perfectly 

equidistant. As a result, all the M²TJs have the same levels distribution where the resistance levels cannot be placed 

perfectly on a line. This introduces a bias in the measured signal and hence in the computed result of the MAC 

operation. In the simulations, this nonideal states distribution is represented by adding a random offset drawn from 

a normal distribution 𝑁(0,  𝜎NL) where 𝜎NL is the root-mean-square error between the nonideal states distribution 

and the corresponding linearly regressed line (Fig. 14).  

 

Figure 13: RMSE in random MVMs performed with a simulated crossbar array of (4 x 4) M²TJs, with respect to the number of states in 

each M²TJ. 

 

Figure 14: Ideal equidistant resistance levels (black dashed lines), and nonideal variations obtained by adding random offsets to the 

levels.  
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Figure 15: Average RMSE in the result of MVMs performed with a crossbar array of (4x4) M²TJs with 4 resistance levels for various levels 

of systematic nonideality 𝜎NL.  

We simulate random MVMs performed with a crossbar array of (4 × 4) M²TJs with 4 resistance levels. Figure 15 

shows the average RMSE in the result of the MVM computed based on the software ground truth. When 𝜎NL  =  0, 

the only source of error left is the quantization process and the RMSE reaches a plateau at1/𝑁 = 0.25 . As 𝜎NL 

increases, the influence of the quantization error in the RMSE progressively decreases until the RMSE finally 

increases linearly with 𝜎NL.  

4.3  Cell-specific errors 

On top of the quantization error and the nonideal states distribution shared by all the M²TJs in the crossbar array, 

we consider errors specific to each M²TJ. These cell-specific errors bring together contributions such as cells-to-

cells variations and resistance noise. In the simulations, this is also represented by simply adding a random offset 

drawn from a distribution 𝑁(0,  𝜎⊥) to the resistance levels that were initially linearly distributed. The difference 

with the previous case (systematic nonidealities) is that in this case the offsets are different from cell to cell, which 

will lead to averaging over the whole array. As a result, the average RMSE in the MVM result increase less quickly 

with 𝜎⊥ than with 𝜎NL as shown in Fig. 16, right. 

  
Figure 16: Left: Average RMSE in the result of MVMs performed with a crossbar array of (4x4) M²TJs with 4 resistance levels for 

various levels of cell-specific nonideality 𝜎⊥. Right: Comparison of the RMSE increase with respect to the level of systematic 

nonideality 𝜎NL and the level of cell-specific nonideality 𝜎⊥. 

4.4 Combined error impact  

The three sources of error (quantization, systematic nonidealities, cell-specific nonidealities) can be considered 

together to assess their combined impact on the average RMSE in the result of MVMs (Fig. 17).  
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Figure 17: Evolution of the RMSE in the MVM result as a function of the level of cell-specific nonideality 𝜎⊥ for different values of the 

level of systematic nonideality 𝜎NL. 

The 3 error contributions can be used to fully explain the combined impact on the RMSE in the MVM results:<   

- 𝜎NL =  0 Ω (blue curves in Fig. 17): The only sources of error are the quantization and the cell-specific 

nonidealities. The curve reaches a plateau at the value of the quantization error 1/𝑁 (0.25) when 𝜎⊥ =  0 Ω 

and ends up increasing linearly as 𝜎⊥ increases as in Fig. 16, left. 

- 𝜎NL =  10 Ω (orange curves in Fig. 17): The RMSE also reaches a plateau as 𝜎⊥ decreases down to 0Ω. The 

value of this plateau is expected to be close to 0.25 if the linear fit in Fig. 15 is considered. However, one 

can see that the sum of the quantization error and the systematic errors is slightly higher due to the 

interplay between the two contributions (Fig. 15). Hence, the actual error at low 𝜎⊥ values is accordingly 

closer to 0.3. As 𝜎⊥ increases, the linear trend reappears. 

- 𝜎NL  =  50 Ω (green curves in Fig. 17): The plateau at low 𝜎⊥ values is closer to the value of the linear fit 

presented in Fig. 15 as expected. The linear trend at higher 𝜎⊥ values is also observed. 

4.5 Optimal number of states 

Figure 13 may seem to indicate that an ever-increasing number of states per M²TJ would reduce the quantization 

error. However, the consideration of additional sources of error would induce an increase of the error if 𝑁 becomes 

too large. Indeed, squeezing more and more resistance levels between two values 𝑅min and 𝑅max will lead to a loss 

of resolution between adjacent levels in the presence of noise leading to deviation from linearly distributed states. 

Hence, there is an optimal number of states per M²TJ 𝑁opt, which corresponds to the maximum number of states 

above which the resistance levels are not resolved anymore, leading to an increase of the error. The optimal number 

of states 𝑁opt should be proportional to the accessible resistance range 𝑅max − 𝑅min and inversely proportional to 

the combined level of nonideality in the states distribution√𝜎NL
2 + 𝜎⊥

2:   

 

The preliminary results presented in Fig. 18 show that the number of states per M²TJ is effectively decreases as 𝜎⊥ 

increases, for a constant 𝜎NL value. More study is needed to define a proper definition of 𝑁opt as a function of the 

different error contributions. 
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Figure 18: Histograms representing the relative distribution of the number of states per M²TJ N minimizing the RMSE in the result of 

random MVMs. The value of 𝜎NL was fixed to 50 Ω, and 𝜎⊥ was fixed to 5 Ω, 30 Ω, and 60 Ω. As 𝜎⊥ increases, lower 𝑁 values yield 

lower error in the MVM results.  

5  Conclusion 

To address the ecological concerns raised by the recent surge in the use of AI since 2022, we studied the 

implementation of a co-processor to perform MVMs in the framework of IMC. The system used here is a crossbar 

array of (4x4) M²TJs presenting each 4 distinct resistance states. A method was developed to retrieve the result of 

the MVMs by rescaling the measured output signal appropriately. This method allows to simulate the computation 

of MVMs using the crossbar array. Standard machine learning tasks are then performed using the inference scheme 

based on the crossbar array. The XOR approximation task shows that the hardware inference process preserves the 

characteristic of the model learned during the training phase. Some errors are present due to the quantization of 

the full-precision weights into only 4 values. The errors are however localized on the decision border of the model, 

i.e. where they are the less problematic. The agreement between the software and the hardware inference 

processes is almost conclusive on the data points of interest. To assess the performance of the method on a more 

complex task, we tackled the MNIST classification problem. A naively complex neural network reached 97.56% test 

accuracy, while the hardware implementation reached 94.48%, marking an accuracy drop of 3.18%. This drop is 

also due to the quantization process. The limited size of the considered crossbar array requires to use it thousands 

of times to emulate the whole operations involved in the inference process. By reducing the dimensionality of the 

input data from 784 to 87 using PCA, the resulting network is much simpler and the number of parameters much 

smaller. The network achieves 98.03% test accuracy when inferred using software. The hardware inference 

achieves 95.24% test accuracy, marking a drop of 2.79%. This smaller difference between the software and 

hardware approaches is due to the mitigation of quantization error in smaller weights matrices and smaller 

networks. Hence, reducing the dimensionality of the input data is a good strategy for simplifying the experiments 

while improving the performance. We then assess two other sources of errors: systematic nonidealities that are 

common to all the devices in the array, and cell-specific nonidealities, which benefit from averaging across the 

whole array. When these contributions are weak, the error in the result of MVMs is dominated by the quantization 

error, but it ends up increasing proportionally to the level of nonideality introduced in the resistance states 

distribution by both sources of error. The combined impact of all three sources of error can be fully explained by 

the separate behavior of these contributions. Finally, we determine that there exist an optimal number of states 

per M²TJ that minimizes the error in the result of the MVMs by compromising between the quantization error and 

the resolution of the resistance states. Preliminary results show an expected decrease of this optimal number of 

states when the combined level of nonideality in the states distribution due to the two latter sources of error 

increases.  
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